The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Masayuki KAWAMATA(58hit)

21-40hit(58hit)

  • Correlation Performance Measures for Phase-Only Correlation Functions Based on Directional Statistics

    Shunsuke YAMAKI  Masahide ABE  Masayuki KAWAMATA  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:6
      Page(s):
    967-970

    This letter proposes performance evaluation of phase-only correlation (POC) functions using signal-to-noise ratio (SNR) and peak-to-correlation energy (PCE). We derive the general expressions of SNR and PCE of the POC functions as correlation performance measures. SNR is expressed by simple fractional function of circular variance. PCE is simply given by squared peak value of the POC functions, and its expectation can be expressed in terms of circular variance.

  • Correct Formulation of Gradient Characteristics for Adaptive Notch Filters Based on Monotonically Increasing Gradient Algorithm

    Shunsuke KOSHITA  Hiroyuki MUNAKATA  Masahide ABE  Masayuki KAWAMATA  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:7
      Page(s):
    1557-1561

    In the field of adaptive notch filtering, Monotonically Increasing Gradient (MIG) algorithm has recently been proposed by Sugiura and Shimamura [1], where it is claimed that the MIG algorithm shows monotonically increasing gradient characteristics. However, our analysis has found that the underlying theory in [1] includes crucial errors. This letter shows that the formulation of the gradient characteristics in [1] is incorrect, and reveals that the MIG algorithm fails to realize monotonically increasing gradient characteristics when the input signal includes white noise.

  • A Modified Gaussian Filter for the Arbitrary Scale LP Enlargement Method

    Shuai YUAN  Akira TAGUCHI  Masahide ABE  Masayuki KAWAMATA  

     
    LETTER-Image

      Vol:
    E90-A No:5
      Page(s):
    1115-1120

    In this paper, we use a modified Gaussian filter to improve enlargement accuracy of the arbitrary scale LP enlargement method, which is based on the Laplacian pyramid representation (so called "LP method"). The parameters of the proposed algorithm are extracted through a theoretical analysis and an experimental estimation. Experimental results show that the proposed modified Gaussian filter is effective for the arbitrary scale LP enlargement method.

  • FOREWORD

    Masayuki KAWAMATA  

     
    FOREWORD

      Vol:
    E76-A No:12
      Page(s):
    2047-2047
  • A Perfect-Reconstruction Encryption Scheme by Using Periodically Time-Varying Digital Filters

    Xuedong YANG  Masayuki KAWAMATA  Tatsuo HIGUCHI  

     
    LETTER-Digital Signal Processing

      Vol:
    E81-A No:1
      Page(s):
    192-196

    This letter proposes a Perfect-Reconstruction (PR) encryption scheme based on a PR QMF bank. Using the proposed scheme, signals can be encrypted and reconstructed perfectly by using two Periodically Time-Varying (PTV) digital filters respectively. Also we find that the proposed scheme has a "good" encryption effect and compares favorably with frequency scramble in the aspects of computation complexity, PR property, and degree of security.

  • A Unified Approach to the Minimization of Quantization Effects in Separable Denominator Multi-Dimensional Digital Filters

    ZHAO Qingfu  Masayuki KAWAMATA  Tatsuo HIGUCHI  

     
    LETTER-Digital Signal Processing

      Vol:
    E70-E No:11
      Page(s):
    1092-1095

    This paper proposes a statistical expression of the output error variance due to coefficient quantization in separable denominator M-D digital filters. Using this expression, this paper shows that minimization of overall quantization errors can be performed by minimizing the roundoff noise.

  • Statistical Analysis of Phase-Only Correlation Functions with Phase-Spectrum Differences Following Wrapped Distributions

    Shunsuke YAMAKI  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Digital Signal Processing

      Vol:
    E99-A No:10
      Page(s):
    1790-1798

    This paper proposes statistical analysis of phase-only correlation functions with phase-spectrum differences following wrapped distributions. We first assume phase-spectrum differences between two signals to be random variables following a linear distribution. Next, based on directional statistics, we convert the linear distribution into a wrapped distribution by wrapping the linear distribution around the circumference of the unit circle. Finally, we derive general expressions of the expectation and variance of the POC functions with phase-spectrum differences following wrapped distributions. We obtain exactly the same expressions between a linear distribution and its corresponding wrapped distribution.

  • Enlargement for Images with Gaussian Noise by Embedded Filtering in the LP Algorithm

    Shuai YUAN  Akira TAGUCHI  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER

      Vol:
    E89-A No:8
      Page(s):
    2129-2139

    In this paper, we propose an enlargement method for images with Gaussian noise based on the Laplacian pyramid (LP) representation. Unlike lowpass pre-processing approaches to the LP enlargement method, an embedded approach is used in this paper. Since the amplitude of Gaussian noise signals is smaller than the amplitude of image edge signals in the predicted LP stage, we adopt a modified ε-filter in the proposed LP enlargement algorithm to reduce the Gaussian noise. Experimental results show that the proposed method can obtain high accuracy denoise enlarged images.

  • Flicker Parameters Estimation in Old Film Sequences Containing Moving Objects

    Xiaoyong ZHANG  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:12
      Page(s):
    2836-2844

    The aim of this study is to improve the accuracy of flicker parameters estimation in old film sequences in which moving objects are present. Conventional methods tend to fail in flicker parameters estimation due to the effects of moving objects. Our proposed method firstly utilizes an adaptive Gaussian mixture model (GMM)-based method to detect the moving objects in the film sequences, and combines the detected results with the histogram-matched frames to generate reference frames for flicker parameters estimation. Then, on the basis of a linear flicker model, the proposed method uses an M-estimator with the reference frames to estimate the flicker parameters. Experimental results show that the proposed method can effectively improve the accuracy of flicker parameters estimation when the moving objects are present in the film sequences.

  • High Accuracy Bicubic Interpolation Using Image Local Features

    Shuai YUAN  Masahide ABE  Akira TAGUCHI  Masayuki KAWAMATA  

     
    LETTER

      Vol:
    E90-A No:8
      Page(s):
    1611-1615

    In this paper, we propose a novel bicubic method for digital image interpolation. Since the conventional bicubic method does not consider image local features, the interpolated images obtained by the conventional bicubic method often have a blurring problem. In this paper, the proposed bicubic method adopts both the local asymmetry features and the local gradient features of an image in the interpolation processing. Experimental results show that the proposed method can obtain high accuracy interpolated images.

  • A New Property of Optimal Realizations of CRSD 2-D Digital Filters and Its Application to the Direct Spatial-Domain Design

    ZHAO Qiangfu  Masayuki KAWAMATA  Tatsuo HIGUCHI  

     
    PAPER-System Theory

      Vol:
    E69-E No:10
      Page(s):
    1084-1092

    On the basis of the controllability gramians, the observability gramians and the second order modes, this paper shows that optimal realizations (filter structures having minimum roundoff noises) of quarter-plane-causal, recursive and separable in denominator 2-D digital filters (CRSD filters for short) are scaled and rotated balanced realizations. Two applications of this relation are given. The first one gives a simple proof of the absence of overflow oscillations in optimal realizations. The second one, which is the main result of this paper, gives a direct design method of CRSD filters in the spatial domain. This method simplifies traditional two-step design (approximation and synthesis) into a one-step design with much less computational complexity. Resulting filters of this direct design method can approximate given 2-D impulse responses closely. In addition, they are always guaranteed to be stable, nearly optimal with respect to roundoff noise and free of overflow oscillations. The efficiency of the direct design method is shown by numerical examples.

  • Direct Design of Separable Denominator 3-D State-Space Digital Filters

    ZHAO Qiangfu  Masayuki KAWAMATA  Tatsuo HIGUCHI  

     
    PAPER-Circuit Theory

      Vol:
    E70-E No:4
      Page(s):
    411-421

    This paper studies the design problem of causal, recursive and separable denominator (CRSD) 3-D state-space digital filters. First, a balanced approximation method and a synthesis method of optimal realizations of CRSD 3-D digital filters are proposed by introducing the concept of characteristic filters. Then, a simple equivalent relation between balanced realizations and optimal realizations of CRSD 3-D digital filters is revealed. Using this relation and the balanced approximation method proposed, this paper proposes a spatial-domain direct design method of CRSD 3-D digital filters. This direct design method can perform approximation and synthesis of CRSD 3-D digital filters simultaneously. Further, it can result in stable state-space digital filters which are nealy optimal with respect to roundoff noise, and free of overflow oscillations. Effciency of direct design method is shown by a numerical example.

  • Minimization of Sensitivity of 2-D Systems and Its Relation to 2-D Balanced Realizations

    Tao LIN  Masayuki KAWAMATA  Tatsuo HIGUCHI  

     
    PAPER-Circuit Theory

      Vol:
    E70-E No:10
      Page(s):
    938-944

    The average coefficient sensitivity is defined for 2-D systems described by Roesser's local state space model. The sensitivity can be computed by using the 2-D observability Gramian and the 2-D controllability Gramian, which are also called the 2-D noise matrix and the 2-D covariance matrix if the 2-D systems are considered to be 2-D digital filters. Minimization of sensitivity via 2-D equivalent transforms is studied in cases of having no constraint and having a scaling constraint on the state vector. In the first case, the minimum sensitivity realizations are equivalent to the 2-D balanced realizations modulo a block orthogonal transform. In the second case, the 2-D systems are considered to be 2-D digital filters and the minimization of sensitivity is equivalent to the minimization of roundoff noise under l2-norm scaling constraint. An example is given to show method of analysing and minimizing the sensitivity of 2-D systems.

  • Design and Evaluation of Highly Prallel VLSI Processors for 2-D State-Space Digital Filters Using Hierarchical Behavioral Description Language and Synthesizer

    Masayuki KAWAMATA  Yasushi IWATA  Tatsuo HIGUCHI  

     
    PAPER-Design and Implementation of Multidimensional Digital Filters

      Vol:
    E75-A No:7
      Page(s):
    837-845

    This paper designs and evaluates highly parallel VLSI processors for real time 2-D state-space digital filters using hierarchical behavioral description language and synthesizer. The architecture of the 2-D state-space digital filtering system is a linear systolic array of homogeneous VLSI processors, each of which consists of eight processing elements (PEs) executing 1-D state-space digital filtering with multi-input and multi-output. Hierarchical behavioral description language and synthesizer are adopted to design and evaluate PE's and the VLSI processors. One 16 bit fixed-point PE executing a (4, 4)-th order 2-D state-space digital filtering is described on the basis of distributed arithmetic in about 1,200 steps by the description language and is composed of 15 K gates in terms of 2 input NAND gate. One VLSI processor which is a cascade connection of eight PEs is composed of 129 K gates and can be integrated into one 1515 [mm2] VLSI chip using 1 µm CMOS standard cell. The 2-D state-space digital filtering system composed of 128 VLSI processors at 25 MHz clock can execute a 1,0241,024 image in 1.47 [msec] and thus can be applied to real-time conventional video signal processing.

  • A Closed Form Solution to L2-Sensitivity Minimization of Second-Order State-Space Digital Filters

    Shunsuke YAMAKI  Masahide ABE  Masayuki KAWAMATA  

     
    LETTER-Digital Signal Processing

      Vol:
    E91-A No:5
      Page(s):
    1268-1273

    This paper proposes a closed form solution to L2-sensitivity minimization of second-order state-space digital filters. Restricting ourselves to the second-order case of state-space digital filters, we can express the L2-sensitivity by a simple linear combination of exponential functions and formulate the L2-sensitivity minimization problem by a simple polynomial equation. As a result, the L2-sensitivity minimization problem can be converted into a problem to find the solution to a fourth-degree polynomial equation of constant coefficients, which can be algebraically solved in closed form without iterative calculations.

  • Closed Form Solutions to L2-Sensitivity Minimization Subject to L2-Scaling Constraints for Second-Order State-Space Digital Filters with Real Poles

    Shunsuke YAMAKI  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Digital Signal Processing

      Vol:
    E93-A No:2
      Page(s):
    476-487

    This paper proposes closed form solutions to the L2-sensitivity minimization subject to L2-scaling constraints for second-order state-space digital filters with real poles. We consider two cases of second-order digital filters: distinct real poles and multiple real poles. The proposed approach reduces the constrained optimization problem to an unconstrained optimization problem by appropriate variable transformation. We can express the L2-sensitivity by a simple linear combination of exponential functions and formulate the L2-sensitivity minimization problem by a simple polynomial equation. As a result, L2-sensitivity is expressed in closed form, and its minimization subject to L2-scaling constraints is achieved without iterative calculations.

  • Controllability, Observability and Model Reduction of Separable Denominator M-D Systems

    ZHAO Qiangfu  Masayuki KAWAMATA  Tatsuo HIGUCHI  

     
    PAPER-Systems and Control

      Vol:
    E71-E No:5
      Page(s):
    505-513

    This paper studies the model reduction of separable denominator multi-dimensional (SD M-D, M is used as an integer) linear, shift-invariant systems (systems for short). First, it shows that the controllability, observability and stability of an SD M-D system are completely determined by M 1-D multi-input multi-output systems, which are referred to as the characteristic systems in this paper. Then the balanced realizations of SD M-D systems are defined, and a synthesis method of such realizations is given. Finally, a model reduction method based on the balanced realizations is proposed. Validity of this method is illustrated by a numerical example of a 3-D system.

  • Limit Cycle-Free 2-D Separable Denominator Digital Filters under Any Constant Input Conditions

    Masayuki KAWAMATA  Tatsuo HIGUCHI  

     
    LETTER-Circuit Theory

      Vol:
    E70-E No:4
      Page(s):
    373-375

    In order to suppress constant input limit cycles in 2-D separable denominator digital filters, bias cancel realizations are proposed by modifying 2-D separable denominator digital filters free of zero imput limit cycles.

  • Statistical Analysis of Phase-Only Correlation Functions between Real Signals with Stochastic Phase-Spectrum Differences

    Shunsuke YAMAKI  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:5
      Page(s):
    1097-1108

    This paper proposes the statistical analysis of phase-only correlation functions between two real signals with phase-spectrum differences. For real signals, their phase-spectrum differences have odd-symmetry with respect to frequency indices. We assume phase-spectrum differences between two signals to be random variables. We next derive the expectation and variance of the POC functions considering the odd-symmetry of the phase-spectrum differences. As a result, the expectation and variance of the POC functions can be expressed by characteristic functions or trigonometric moments of the phase-spectrum differences. Furthermore, it is shown that the peak value of the POC function monotonically decreases and the sidelobe values monotonically increase as the variance of the phase-spectrum differences increases.

  • Design and Realization of Variable IIR Digital Filters as a Cascade of Identical Subfilters

    Georgi STOYANOV  Ivan UZUNOV  Masayuki KAWAMATA  

     
    PAPER-Digital Filter

      Vol:
    E84-A No:8
      Page(s):
    1831-1839

    A new approach to design variable IIR digital filters by using a cascade of N identical individual filters of any order n is proposed in this paper. First, the approximation method for lowpass filter specifications is outlined, then the general limitations of the new method are investigated and a compact formula is derived. Next, the limitations for the main canonic approximations (Butterworth, Chebyshev and Elliptic) are investigated and compared and convenient expressions for design and evaluation are obtained. New first- and second-order filter sections, permitting very easy tuning of the cutoff frequency by recalculating and reprogramming of a single multiplier coefficient value, are developed and the design and tuning strategies for highpass, bandpass and bandstop filters are proposed. Finally design examples are given and the sound superiority of the new method compared to other known is demonstrated experimentally.

21-40hit(58hit)